Exercise 54

Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval.

$$
\ln x=x-\sqrt{x}, \quad(2,3)
$$

Solution

Bring all terms to one side.

$$
\begin{equation*}
\ln x+\sqrt{x}-x=0 \tag{2,3}
\end{equation*}
$$

Let $f(x)=\ln x+\sqrt{x}-x$. The logarithmic, root, and polynomial functions are each continuous on their respective domains by Theorem 7. The sum or difference of these functions is also continuous by Theorem 4.

$$
f(x)=0, \quad(2,3)
$$

Find a value of x in the interval $[2,3]$ so that $f(x)$ is negative, and find a value of x in the interval $[2,3]$ so that $f(x)$ is positive.

$$
\begin{aligned}
& f(2) \approx 0.107 \\
& f(3) \approx-0.169
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [2,3], and $N=0$ lies between $f(2)$ and $f(3)$. By the Intermediate Value Theorem, then, there exists a number c such that $f(c)=0$.

